Pawley Multiple Antisymmetry Three-Dimensional Space Groups $G_{i,p'*}^{l,p'*}$

By S. V. JABLAN

The Mathematical Institute, Knez Mihailova 35, Belgrade, Yugoslavia

(Received 13 December 1991; accepted 15 May 1992)

Abstract

By use of the antisymmetric characteristic method, Pawley multiple antisymmetry three-dimensional space groups $G_3^{l,p'}$ (p=3,4,6) are derived.

Introduction

Crystallographic (p')-symmetry three-dimensional space groups (or Pawley colored symmetry groups) $G_3^{p'}$ (p = 3, 4, 6) were derived by Palistrant (1980, 1981), Zamorzaev, Galvarskii & Palistrant (1978) and Zamorzaev, Karpova, Lungu & Palistrant (1986). From 73 symmorphic space groups G_3 were derived 670 junior $G_3^{p'}$ (96 $G_3^{3'} + 266$ $G_3^{4'} + 308$ $G_3^{6'}$), from 54 hemisymmorphic G_3 were derived 562 junior $G_3^{p'}$ $(75 G_3^{3'} + 252 G_3^{4'} + 235 G_3^{6'})$ and from 103 asymmorphic G_3 were derived 980 junior $G_3^{p'}$ (138 $G_3^{3'}$ + 432 $G_3^{4'}$ + 410 $G_3^{6'}$); this means that the category $G_3^{p'}$ (p = 3, 4, 6) consists of 2212 junior groups (309 $G_3^{3'}$ + 950 $G_3^{4'}$ + 953 $G_3^{6'}$). By the use of the generalized antisymmetric characteristic (AC) method (Jablan, 1987, 1990, 1992a, b) all crystallographic (p', 2')-symmetry three-dimensional space groups $G_3^{l,p'}$ (p = 3, 4, 6) will be derived.

1. Some general remarks on (p') and (p', 2') symmetry

Pawley (p') symmetry is a particular case of the general P symmetry with $P = D_{p(2p)}$, where $D_{p(2p)}$ is the regular dihedral permutation group, generated by the permutations $e_1 = (1 \dots p)(p+1 \dots 2p)$ and $e_2 = (1 p+1)(2 p+2) \dots (p 2p)$, $p \ge 2$, satisfying the relations

$$e_1^p = e_2^2 = (e_1 e_2)^2 = E$$
.

For each p the group $D_{p(2p)}$ is irreducible.

By introducing l anti-identity transformations e_3, \ldots, e_{l+2} (Zamorzaev, 1976; Zamorzaev & Palistrant, 1980) $(l \in N)$ commuting between themselves and with e_1, e_2 , we have $(p', 2^l)$ symmetry, with the group $P = D_{p(2p)} \times C_2^l$.

In this work only junior groups of complete $(p', 2^l)$ symmetry will be considered. Every junior (p') symmetry group $G^{p'}$ is derived from a particular generat-

ing symmetry group G, and every junior $(p', 2^l)$ symmetry group $G^{l,p'}$ is derived from a particular junior (p') symmetry group (Zamorzaev, Galyarskii & Palistrant, 1978; Zamorzaev, Karpova, Lungu & Palistrant, 1986; Palistrant, 1981).

Theorem 1: (a) A $(p', 2^l)$ symmetry group $G^{l,p'}$ is the junior $(p', 2^l)$ symmetry group if all relations given in the presentation of its generating symmetry group G remain satisfied after replacing the generators of the group G by the corresponding $(p', 2^l)$ symmetry-group generators.

(b) A junior $(p', 2^l)$ symmetry group is called the M^m -type $(p', 2^l)$ symmetry group if it is an M^m -type group regarded as an l-multiple antisymmetry group.

(c) A junior M^m -type $(p', 2^l)$ symmetry group $G^{l,p'}$ has complete $(p', 2^l)$ symmetry if, for every i (i = 1, 2, ..., l+2), the e_i transformation can be obtained in the group $G^{l,p'}$ as an independent $(p', 2^l)$ symmetry transformation.

If only condition (c) is not satisfied, $G^{l,p'}$ is the incomplete junior M^m -type $(p', 2^l)$ symmetry group.

Since the derivation of $(3', 2^l)$ symmetry groups coincides with the derivation of $(32, 2^l)$ symmetry groups (Jablan, 1992a) as the basis for the derivation of all crystallographic $(p', 2^l)$ symmetry groups (where p = 3, 4, 6), (4') and (6') symmetry groups will be sufficient. The derivation will be realized by the use of the generalized AC method.

Definition 1: Let all the products of (p') symmetry generators of a group $G^{p'}$, within which every generator participates once at most, be formed and then subsets of transformations equivalent with regard to (p') symmetry be separated. The resulting system is called the antisymmetric characteristic of the group $G^{p'}$ and is denoted by $AC(G^{p'})$ (Jablan, 1987, 1990, 1992a, b).

Theorem 2: Two M^m -type $(p', 2^l)$ symmetry groups derived from the same (p') symmetry group for m fixed (m = 1, ..., l) are equal if and only if they possess equal antisymmetric characteristics.

The problem of differentiating between complete and incomplete $(p', 2^l)$ -symmetry junior M^m -type groups can be solved by the use of the homomorphism of the subgroup $C_p = \{e_1\}$ of the group $D_{p(2p)}$ to the group C_2 at $p = 0 \pmod{2}$

$$e_1^{2k-1} \to e_1, \quad e_1^{2k} \to E, \quad 1 \le k \le (p+1)/2$$

(Jablan, 1992a, b).

© 1993 International Union of Crystallography

^{*} This research was supported by Science Fund of Serbia, grant no. 0401A, through the Matematički Institut.

Table	1.	Catalogue	e of	junior	M ^m -type	$(p', 2^l)$ -
symme	try	symmorph	ic thre	ee-dimer	nsional spac	ce groups

symn	symmetry symmorphic three-dimensional space groups									
The n	umbers 1	$V_m^{p'}(p=$	3, 4,	6) are	e:					
$N_1^{p'} = N_2^{p'} = N_2^{p'} = N_3^{p'} = N_4^{p'} = = N_4^{p'} = 0$	96 G ₃ ³ + 2 496 G ₃ ^{1,3} 4709 G ₃ ² 71713 G 1011477; 1283520 13661760 19998720	$+2171 G$ $3' + 2408$ $3' + 273$ $G_3^{4,3'} + 273$ $G_3^{4,3'} + 2$	G ₃ ^{1,4} ′-8 g ₃ ^{2,4} 252 G 0563	$+ 264^{4} + 38$ $G_{3}^{3,4'} + $ $+ 20 G_{3}^{4}$	133 133 666	$G_3^{2,6'} = 531$ $G_3^{2,6'} = 6$ $512 G_3^{3,6}$				
	(2') (4')	(6')		(2')	(4')	(6')		(21)	(41)	(61)
2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s 16s 17s 20s 20s 21s 22s 23s	(3') (4') 1	(6') 1 3 2 3 2 10 9 7 12 3 4 11 7 12 3 7 11 22 5 9	24s 25s 26s 27s 28s 29s 30s 31s 32s 33s 34s 35s 36s 37s 40s 41s 42s 43s 44s 44s 45s 46s 47s	(3') 1 1 1 1 1 1 1 1 1 1 1 1 4 6 4 2	(4') 8 7 4 2 6 7 13 10 10 11 7 7 18 16	(6') 3 1 5 3 5 5 3 5 7 2 1 1 4 6 4 5	48s 49s 50s 51s 52s 53s 54s 55s 56s 57s 68s 67s 68s 69s 70s 71s 72s 73s	(3') 3 1 2 3 1 2 5 3 4 2 3 1 1 1 1 1 1 1	(4') 2 1 1 2 2 2 2 2 2 2 4 1	(6') 7 1 6 3 1 5 14 7 11 5 17 1 1 1 2 3 1
2 <i>s</i>	(3', 2)	(4', 2)		(6', 2) 1		(3', 2 ²)		2 ²)		, 2 ²)
3 s 4 s	4 3	10 5		12 4		16 6	3	6	4	\$ 0
5 s 6 s	4 4	6 6		14 6		22 12	2	0	(54
7 s 8 s	14 16	45 54		84		128	39		84	
95	8	28		66 81		120 96	26 35		36 126	
10s 11s	22 4	64 6		88 8		228 12	36	0	52	20
12 <i>s</i>	5	17		23		42	10	8	15	56
13 <i>s</i> 14 <i>s</i>	16 14	90 64		184 84		300 168	144 48		321 67	
15 <i>s</i>	20	84		108		192	52		72	
16 <i>s</i> 17 <i>s</i>	6 14	12 48		12 84		24 168	38	4	67	12
18 <i>s</i>	16	90		274		450	234	0	963	36
19 <i>s</i> 20 <i>s</i>	38 10	252 44		420 48		804 96	439 25		801 33	
21 <i>s</i> 22 <i>s</i>	18	168		228		432	403		537	
24s		8 80					57	6		
25 s 26 s	3	28 10		7						
27 <i>s</i>	1	10		,		6				
28 <i>s</i> 29 <i>s</i>	7 6	42 28		34		54	23	4	19	92
30 <i>s</i>	7	80		12 34		24 54	42	0	19	2
31 <i>s</i> 32 <i>s</i>	6 8	40 69		12 34		24 60				
33 <i>s</i>	7	70		34		54	37 37		16 19	
34s 35s	6 4	28 22		12 8		24 12				
36 <i>s</i>	16	294		202		300	504	0	372	20
37 <i>s</i> 40 <i>s</i>	14 4	192		84		168	153	6	67	
40s 41s	2									

Table 1 (cont.)

	(3', 2	2) ((4', 2)	(6', 2)	$(3', 2^2)$	$(4', 2^2)$	$(6', 2^2)$
425	2					, , ,	
43 <i>s</i>	1						
445	4						
45s	6						
46s	4						
47 s	8		6	13	24		
48 <i>s</i>	12		6	20	36		
495	2						
50s	12			24	48		
51 <i>s</i>	3						
52s	1						
53 s	8		6	14	24		
54 <i>s</i>	20		6	38	60		
55 <i>s</i>	12		6	19	36		
56 s	16		6	29	48		
57 s	8		6	13	24		
58 <i>s</i>	30		36	160	288	240	1104
65 <i>s</i>	2						
66 s	2						
68 <i>s</i>	1						
69 <i>s</i>	2						
71 <i>s</i>	4						
72 <i>s</i>	6		8	12	24		
73 s	2						
	$(3', 2^3)$	$(4' 2^3)$	$(6' 2^3)$	$(3', 2^4)$	$(4', 2^4)$	(6' 2 ⁴)	$(3', 2^5)$
٦.		(,, -)	(0,2)	(3,2)	(7,2)	(0,2)	(3,2)
2s 3s	1 56						
5 s	112						
7 <i>s</i>	1400	3276	7616	13440			
8 <i>s</i>	672	3270	7010	13440			
95	1516	3360	13776	20160			
10s	1680	3300	13//0	20100			
125	336						
13s	5712	18144	43008	80640			
14s	1344	10177	73000	80040			
15s	2688						
17s	1344						
18 <i>s</i>	17220	77112	364224	685440	2056320	10321920	10009720
195	16464	49392	106848	241920	2030320	10321920	19998/20
20s	672	47372	100040	241720			
21 <i>s</i>	10080	64512	86016	161280			
285	336	07312	00010	101200			
30s	336						
32s	336						
33s	336						
36 <i>s</i>	5712	57456	45024	80640			
37 <i>s</i>	1344	5/450	4 502 4	00040			
58 <i>s</i>							
203							
	2016						

2. $(p', 2^l)$ -symmetry three-dimensional space groups $G_3^{l,p'}$ (p = 3, 4, 6)

The original Fedorov symbols of symmorphic, hemisymmorphic and asymmorphic space groups (Koptsik, 1966; Zamorzaev 1976), international symbols (*International Tables for Crystallography*, 1987) and Zamorzaev notation are used in space-symmetry-group notation.

The application of the theoretical assumptions given above will be illustrated by examples of complete M^m -type $(p', 2^l)$ -symmetry junior three-dimensional space groups (p = 3, 4, 6) derived in the family with the common generating symmetry group G = 7s (P2/m), $\{a, b, c\}(2:m)$ with the AC: $\{m, cm\}\{2, 2a, 2b, 2ab\}$ belonging to the AC-equivalency class VII (Jablan, 1987, Table 1). At p = 3 we

have two junior (3') symmetry groups:

$${a, b, c^{(3)}(2: m'), \{a^{(3)}, b, c\}(2'): m).}$$

Because of the e_2 transformation m', the AC of the first group is of the form $\{e_2, e_2\}\{E, E, E, E\}$ and of the type $(2)(5)^1$, and the AC of the second is of the form $\{E, E\}\{e_2, e_2, e_2, e_2\}$ and of the same type $(3)(5)^1$. Hence, for both of them, $N_1 = 7$, $N_2 = 64$, $N_3 = 700$, $N_4 = 6720$ (Jablan, 1987, 1992a). So we have the following complete (3', 2) symmetry groups:

$$\{*a, b, c^{(3)}(2: m'), \{a, b, *c^{(3)}(2: m'), \{a, b, c^{(3)}(*2: m'), \{*a, b, c^{(3)}(2: m'), \{*a, b, c^{(3)}(2: *m'), \{a, b, c^{(3)}(*2: *m'), \{*a, b, c^{(3)}(*2: *m'), \{*a^{(3)}, b, c^{(2)}: m), \{*a^{(3)}, b, c^{(2)}: m), \{*a^{(3)}, b, c^{(2)}: m), \{*a^{(3)}, b, c^{(2)}: *m, \{*a^{(3)}, b, c^{(2)}: *m), \{*a^{(3)}, b, c^{(2)}: *m),$$

where the antisymmetries are denoted by an asterisk. At $p = 0 \pmod{2}$, the form and, consequently, the type of $AC(G^p)$ is obtained by the use of the homomorphism mentioned in § 1. By treating the six (4') symmetry groups belonging to this family in this way, we have the following results: three of them, ${a^{(4)}, b, c}(2'): m), {a^{(4)}, b, c}(2'): m^{(2)}$ and ${a^{(4)}, b, c^{(2)}}$ (2'': m), possess ACs of the form $\{E, E\}$ $\{e_2, e_2, e_3\}$ e_1e_2 , e_1e_2 } and of the type (3)(9), where (9) denotes the type of term $\{e_2, e_2, e_1e_2, e_1e_2\}$, which contains e_2 and e_1e_2 transformations. These transformations are nonequivalent in the sense of multiple antisymmetry, so with regard to the multiple antisymmetry the type of the term mentioned is (9). However, they are equivalent in the sense of (p') symmetry, so the type of this term is denoted by (9). This is the reason why the derivation of multiple-antisymmetry groups from the (p') symmetry groups with such antisymmetric characteristics cannot be simply reduced according to the theory of multiple antisymmetry, i.e. by the derivation of M^m -type multiple antisymmetry groups of the (m = 3, ..., l+2) from the M^2 -type groups, as was done in the case of $(p2, 2^{l})$ symmetry groups. In all the cases when some part of the AC contains the equivalent transformations e_2 and e_1e_2 , the type of this term will be underlined. From the first group $\{a^{(4)}, b, c\}(2^{(2)}; m), \text{ we derive } N_1[\{a^{(4)}, b, c\}(2^{(2)}; m)] =$ 9 junior complete M^1 -type (4', 2) symmetry groups: $\{a^{(4)}, b, c\}(2''; *m)$ with AC: $\{e_3, e_3\}\{e_2, e_2, e_1e_2, e_2\}$ e_1e_2 } of type $(3)(9)^3$;

 $\{a^{(4)}, b, c\}(*2'): *m\}$ with AC: $\{e_3, e_3\}\{e_2e_3, e_2e_3, e_1e_2e_3, e_1e_2e_3, e_1e_2e_3\}$ of type $(3)(9)^3$;

 $\{*a^{(4}, b, c\}(2'): *m\}$ with AC: $\{e_3, e_3\}\{e_2, e_2, e_1e_2e_3, e_1e_2e_3\}$ of type $(3)(9)^3$;

 $\{a^{(4)}, b, *c\}(2'): m\}$ with AC: $\{E, e_3\}\{e_2, e_2, e_1e_2, e_1e_2\}$ of type $(4)(\underline{9})^3$; $\{a^{(4)}, b, *c\}(*2'): m\}$ with AC: $\{E, e_3\}\{e_2e_3, e_2e_3, e_1e_2e_3, e_1e_2e_3\}$ of type $(4)(\underline{9})^3$; $\{*a^{(4)}, b, *c\}(2'): m\}$ with AC: $\{E, e_3\}\{e_2, e_2, e_1e_2e_3, e_1e_2e_3\}$ of type $(4)(9)^3$; $\{a^{(4)}, b, c\}(2'): m\}$ with AC: $\{e_3, e_3\}\{e_2, e_1e_2, e_2e_3, e_1e_2e_3\}$ of type $(3)(\underline{16})^3$; $\{a^{(4)}, b, c\}(2'): m\}$ with AC: $\{e_3, e_3\}\{e_2, e_1e_2, e_2e_3, e_1e_2e_3\}$ of type $(3)(\underline{16})^3$; $\{a^{(4)}, b, c\}(2'): m\}$ with AC: $\{e_3, e_3\}\{e_2, e_1e_2, e_2e_3, e_1e_2e_3\}$ of type $(3)(\underline{16})^3$; $\{a^{(4)}, b, c\}(2'): m\}$ with AC: $\{E, e_3\}\{e_2, e_1e_2, e_1e_2, e_2e_3, e_2e_3\}$ of type $(4)(\underline{16})^3$.

From the groups with the AC of type $(3)(9)^3$ can be derived the six M^4 -type groups: two of type $(4)(9)^4$, one of type $(4)(9)^4$, two of type $(3)(16)^4$ and one of type $(4)(\underline{16})^4$; from the group with the AC of type $(3)(9)^3$, the seven M^4 -type groups: four of type $(4)(9)^4$, two of type $(3)(16)^4$ and one of type $(4)(16)^4$; from the groups with the AC of type $(4)(9)^3$, the ten M^4 -type groups: four of type $(4)(9)^4$, two of type $(4)(9)^4$ and four of type $(4)(\underline{16})^4$; from the group with the AC of type $(4)(9)^3$, the $\overline{12}$ M^4 -type groups: eight of type $(4)(9)^4$ and four of type $(4)(16)^4$; from the group with the AC of the type $(3)(\underline{16})^3$, the 12 M^4 type groups: four of type $(3)(\underline{16})^4$, two of type $(3)(16)^4$, four of type $(4)(\underline{16})^4$ and two of type $(4)(16)^4$; from the group with the AC of the type $(4)(\underline{16})^3$, the 18 M^4 -type groups: 12 of type $(4)(\underline{16})^4$ and 6 of type $(4)(16)^4$. Hence, $N_2[\{a^{(4}, b, c\}(2'): m)] = 93$. Since 4 M^5 -type groups can be derived from the groups of types $(4)(9)^4$ and $(4)(9)^4$, 6 can be derived from $(3)(\underline{16})^4$, 8 from $(3)(16)^4$, 12 from $(4)(\underline{16})^4$ and 16 from $(3)(\underline{16})^4$, $N_3[\{a^{(4}, b, c\}(2'): m\}] = 840$.

The remaining three (4') symmetry groups $\{a, b, c^{(4)}\}(2: m'')$, $\{a, b, c^{(4)}\}(2^{(2: m'')})$ and $\{a^{(2)}, b, c^{(4)}\}(2: m'')$ possess the AC of the form $\{e_2, e_1e_2\}(E, E, E, E\}$ and of type (4)(5)², where (4) denotes the type of the term $\{e_2, e_1e_2\}$. In the case of (p') symmetry groups with the AC in which the term $\{e_2, e_1e_2\}$ occurs once and only once, the series of numbers N_p^p can be simply computed using the following theorem.

Theorem 3: Assume that in the $AC(G^{p'})$ the term $\{e_2, e_1e_2\}$ occurs once and only once. If N_m denotes the number of junior M^{m+2} -type multiple antisymmetry groups derived from the $AC(G^p)$ treated as the AC of a two-multiple antisymmetry group, then $N_m(G^p) = (2^m + 1)N_m/2^{m+1} (m = 1, ..., l)$.

Proof: Because the term $\{e_2, e_1e_2\}$ occurs once and only once in the AC(G^p), it is independent of the other part of the AC. For m=1 it is transformed into the four terms that differ in the sense of three-multiple antisymmetry: $\{e_2, e_1e_2\}$, $\{e_2e_3, e_1e_2\}$, $\{e_2, e_1e_2e_3\}$, $\{e_2e_3, e_1e_2e_3\}$, resulting in the three terms that differ in the sense of (p', 2) symmetry: $\{e_2, e_1e_2\}$, $\{e_2e_3, e_1e_2\} = \{e_2, e_1e_2e_3\}$, $\{e_2e_3, e_1e_2e_3\}$. Hence, $N_1(G^2) = 3N_1/4$. Proceeding in the same way, for

Table 2. Catalogue of junior M^m -type $(p', 2^l)$ -symmetry hemisymmorphic three-dimensional space groups

metry nemisymmorphic inree-aimensional space groups												
The numbers $N_{m}^{p'}(p=3,4,6)$ are:												
			252 G									
$N_1^{p'} = 413 \ G_3^{1,3'} + 1705 \ G_3^{1,4'} + 1863 \ G_3^{1,6'} = 3981;$												
N 2 =	$N_2^p = 3498 \ G_3^{2,3'} + 13368 \ G_3^{2,4'} + 19786 \ G_3^{2,6'} = 36652;$											
NP' =	= 378	84 C	$\hat{G}_{2}^{3,3'} + 88$	8032	$G_{3}^{3,4'}+$	- 1800	$96G_3^{3}$	6' = 3060	12:			
$N_3^{p'} = 37884 \ G_3^{3,3'} + 88032 \ G_3^{3,4'} + 180096 \ G_3^{3,6'} = 306012;$ $N_4^{p'} = 362880 \ G_3^{4,3'} = 362880.$												
			(6')	0200	(3')	(4')	(6')		(3')	(4')	(6')	
										` '		
1 <i>h</i>	1	2	3	19 h	1	3	3	37 <i>h</i> 38 <i>h</i>	1	10 16	3 7	
2 h 3 h	1 2	2 7	1 9	20 <i>h</i> 21 <i>h</i>	2 2	11 14	12 22	39 <i>h</i>	1 2	10	′	
4h	2	5	5	22 <i>h</i>	2	12	12	40 <i>h</i>	1			
5 h	1	3	5	23 h	2	9	12	41 <i>h</i>	1			
6 <i>h</i>	2	7	12	24h	1	2	2	42 <i>h</i>	2	1	2	
7 h 8 h	2	7 2	5 2	25h 26h		4 4		43 h 44 h	3 2	1	3 2	
9 <i>h</i>	1 1	2	3	27 h		2		45h	3	1	3	
10 <i>h</i>	1	4	3	28 <i>h</i>		5		46h	4	1	4	
11 <i>h</i>	2	9	11	29 h	1	7	3	47 h	2	1	2	
12h	2	9	6	30h	1	6	3 2	48 <i>h</i>	3 1	2	9	
13 <i>h</i> 14 <i>h</i>	2 2	7	5 6	31 <i>h</i> 32 <i>h</i>	1 1	6 6	3	51 <i>h</i> 52 <i>h</i>	1			
15 <i>h</i>	1	3	3	33 h	i	4	2	53 h	i		2	
16 <i>h</i>	1	1	1	34h	1	6	3	54h	1		1	
17 <i>h</i>	2	10	16	35h	1	11	5					
18 <i>h</i>	2	8	10	36 <i>h</i>	1 -	16	7					
	(3',	, 2)	(4', 2)	2)	(6', 2)) ($3', 2^2$)	$(4', 2^2)$	[!])	$(6', 2^2)$	²)	
1 <i>h</i>		3	6		7		6					
2 <i>h</i>		1	25		50		70	122		212		
3 h 4 h		2 8	35 16		50 14		72 24	132		212		
5 <i>h</i>		7	18		34		54	90		192		
6 <i>h</i>		20	60		102		192	384		648		
7 h		8	18		13		24					
8 h 9 h		3 6	2 8		4 12		6 24					
10 <i>h</i>		6	12		12		24					
11 <i>h</i>		20	76		94		192	480		600		
12h		12	36		24		48					
13h		12	28		20		48					
14h 15h		6	12 10		24 12		48 24					
16 <i>h</i>		2	-									
17 <i>h</i>		26	122		242		456	1872		4074		
18 <i>h</i>	1	17	53		78		150	288		498		
19 h 20 h	-	5 2 4	9 104		15 126		24 264	18 720		58 936		
21 <i>h</i>		36	256		444		768	5088		8784		
22 <i>h</i>		22	120		124		252	960		940		
23 <i>h</i>	2	24	88		126		264	624		948		
24h 25h		4	4 12		5		12					
26h			16									
28 <i>h</i>			20									
29 h		4	17		8		12					
30 <i>h</i> 31 <i>h</i>		4	16 16		8 5		12 12					
32h		4	15		8		12					
33h		3	4		4		6					
34h		4	18		8		12					
35h 36h		10	104		48		96 06	336		840		
30 <i>n</i> 37 <i>h</i>		10 6	134 40		60 12		96 24	840		384	•	
38 <i>h</i>		14	192		84		168	1536		672	2	
42 <i>h</i>		4										
43h		6										
44 h 45 h		4 6										
46h		8										
47 h		4										
48 <i>h</i>		18	8	3	36		72					
53 h 54 h		2										
J=11		-										

Tabl	. 2	(cont.)	
Lab	le 7 1	(cont.)	

	$(3', 2^3)$	$(4', 2^3)$	$(6', 2^3)$	$(3', 2^4)$
3 <i>h</i>	336			
5 h	336			
6h	1344			
11 <i>h</i>	1344			
17 <i>h</i>	8568	23520	53760	120960
18 <i>h</i>	1008			
19 <i>h</i>	84			
20 <i>h</i>	2016			
21 <i>h</i>	16128	64512	126336	241920
22 <i>h</i>	2016			
23 <i>h</i>	2016			
35 <i>h</i>	672			
36 <i>h</i>	672			
38 <i>h</i>	1344			

every $m \ (m=2,\ldots,l)$, it is transformed into the 2^{m+1} terms that differ in the sense of (m+2)-multiple antisymmetry, resulting in the 2^m+1 terms that differ in the sense of $(p',2^l)$ symmetry, so $N_m(G^{p'})=(2^m+1)N_m/2^{m+1}$.

Treated as the AC of a two-multiple antisymmetry group, the AC of the form $\{e_2, e_1e_2\}\{E, E, E, E\}$ and of type $(4)(5)^2$ gives $N_1 = 8$, $N_2 = 64$, $N_3 = 448$, so for the (4') symmetry group $G^4 = \{a, b, c^{(4)}\}(2: m')$ with the same AC, of type $(\underline{4})(5)^2$, $N_1(G^4) = 6$, $N_2(G^4) = 40$, $N_3 = (G^4) = 252$. The same holds for the other two (4') symmetry groups $\{a^{(4)}, b, c\}(2^2: m'), \{a^{(2)}, b, c^{(4)}\}(2: m')$ with identical ACs. Hence, for the symmetry group $(2 + 2)^2 = (2 + 2$

From the ten (6') symmetry groups of the same family, two of them, $\{a, b, c^{(3)}(2^{(2)}: m')\}$ and $\{a^{(3)}, b, c\}(2'): m^{(2)}\}$ possess the AC of type (3)(5)², giving $N_1^6 = 5$, $N_2^6 = 34$, $N_3^6 = 234$; one, $\{a^{(2)}, b, c^{(3)}(2: m')\}$, possesses the AC of type (3)(9)², giving $N_1^6 = 11$, $N_2^6 = 132$, $N_3^6 = 1344$; one, $\{a^{(3)}, b, c^{(2)}(2'): m\}$, possesses the AC of type (4)(5)², giving $N_1^6 = 8$, $N_2^6 = 64$, $N_3^6 = 448$; two, $\{a^{(6)}, b, c\}(2'): m\}$ and $\{a^{(6)}, b, c\}(2'): m^{(2)}$, possess the AC of type (3)(9)², giving $N_1^6 = 9$, $N_2^6 = 93$, $N_3^6 = 840$; three, $\{a, b, c^{(6)}(2: m')\}$, $\{a, b, c^{(6)}(2^{(2)}: m')\}$ and $\{a^{(2)}, b, c^{(6)}(2: m')\}$, possess AC of type (4)(9)², giving $N_1^6 = 12$, $N_2^6 = 150$, $N_3^6 = 1512$; and one, $\{a^{(6)}, b, c^{(2)}(2'): m\}$, possesses AC of type (4)(9)², giving $N_1^6 = 13$, $N_2^6 = 168$, $N_3^6 = 1680$. Hence, $N_1^6 = 13$, $N_2^6 = 168$, $N_3^6 = 1680$. Hence, $N_1^6 = 16$, $N_2^6 = 16$, $N_3^6 = 16$

In the same manner, the partial catalogue at all complete M^m -type $(p', 2^l)$ -symmetry junior symmorphic three-dimensional space groups $G_3^{l,p'}(p=3,4,6)$ is realized. According to Jablan (1987), this partial catalogue leads to the possibility of a complete catalogue. The final results, according to symmorphic, hemisymmorphic and asymmorphic $(p', 2^l)$ symmetry groups are summarized in Tables 1 to 3.

3. Concluding remarks

For the junior M^m -type $(P', 2^l)$ -symmetry threedimensional space groups, the numbers $N_m^{p'}$

Table 3. Catalogue of junior M^m -type $(p', 2^l)$ - symmetry asymmorphic three-dimensional space groups						(p', 2')-	Table 3 (cont.)						
-				dimensi	onal spa	ce groups		(3', 2)	(4', 2)	(6', 2)	$(3', 2^2)$	$(4', 2^2)$	$(6', 2^2)$
$N_{0}^{p'} = 13$	$38 G_3^{3'} + 6$	$G_m^{p'}(p=3,4,4)$ $G_3^{4'}+4$	$10 G_3^{6'} = 9$	980;			36a 37a		24 16				
$N_1^{p'} = 72$	$25 G_3^{1,3'} + $	$+2485 G_3^{1,4}$ $+16208 G_3^{1,4}$	+ 2781 C	$G_3^{1.6'} = 599$	1;		38 <i>a</i> 40a	6	8 8	12	24		
$N_2^r = 31$	184 G3" 1600 G3	+ 16208 G $3' + 80640 G$	$3^{11} + 2090$	060 G ^{3,6} ' =	42298; 242200:		41 <i>a</i>	4	20	6	12		
$N_3^P = 24$	11920 G	$\frac{4.3'}{3} = 241920$), 120).	7900 🔾 3	- 242200,		42 <i>a</i> 43 <i>a</i>	3 4	4 20	7 8	6 12		
				0 (40	(21)	(41) (61)	44a	4	12	6	12		
(3	(4')		(3') (4		(3')	(4') (6')	45a	4	12	6	12		
1 <i>a</i> 1		1 34 <i>a</i>			67a 1	10 3	46 <i>a</i> 47 <i>a</i>	6 7	20 52	12 32	24 54	288	174
2a 2 3a 2	2 4 2	5 35a 4 36a			70a 1 71a 1	1 1 1 1	48a	2	32	32	J 4	200	1,4
4a 2	2 6	8 37 <i>a</i>			72a 2	1 2	49 a	2					
5a 2		6 38 <i>a</i>			73a 2 74a 1	1 2	50a 51a	4 2	8	8	12		
	1 2 2 4	3 39 a 5 40 a		2 3	75a 1		52 <i>a</i>	4	14	11	12		
8 <i>a</i> 1	1 1	1 41 <i>a</i>	1 '	7 2	76a 1		53 a	2					
	2 6	10 42 <i>a</i>		3	77a 1 78a 1		54a 55a	10 10	84 116	60 60	96 96	828 720	384 384
	2 6 2 4	5 43 a 5 44 a		3 3	78a 1 79a 2	2	56a	6	28	12	24	720	304
	2 3	2 45 <i>a</i>	1 4	4 2	80a 2	2	57 a	6	32	12	24		
	2 5	6 464		5 3	81 <i>a</i> 3	1 3 1 2	58 a 59 a	6	24 24	12 12	24 24		
	3 18 3 13	30 47 a 17 48 a		8 5 2 1	82a 2 83a 2	1 2 1 2	60a	6 10	144	48	96	1536	336
	3 10	16 49a		2 1	84a 2	2 4	61 <i>a</i>	10	128	48	96	864	336
	3 9	9 50 <i>a</i>		4 3	85a 2	2 4	62 <i>a</i>	8	60	36	60	240	192
	3 14 3 11	21 51 <i>a</i> 21 52 <i>a</i>		2 1 6 3	86a 5 87a 3	1 5 2 9	63 a 64 a	6 6	40 40	12 12	24 24		
	2 7	14 534		3 1	88a 3	2 9	65 <i>a</i>	6	40	12	24		
	1 2	7 540			93a 1		66 <i>a</i>	6	28 40	12	24 24		
	2 6 3 11	10 55 <i>a</i>		4 7 7 3	94a 1 95a 1		67 a 70 a	6 1	40	12	24		
	2 9	10 576		8 3	96a 1	1	71 <i>a</i>	1					
	2 6	5 586		6 3	97a 1	,	72 <i>a</i>	2					
	3 7 2 5	9 59 <i>a</i> 5 60 <i>a</i>		6 3 5 5	98a 1 99a 1	1 2	73 a 79 a	2 4					
	3 7	9 614			100a 1	1	80 <i>a</i>	4					
	1 2	3 626			101a 1	1	81 <i>a</i>	6					
30 <i>a</i> 31 <i>a</i>	1 1	63 <i>a</i> 64 <i>a</i>		0 3 0 3	102 <i>a</i> 1 103 <i>a</i> 1	1 2	82a 83a	4 4					
32 <i>a</i>	2	656		0 3		_	84 <i>a</i>	8	6	10	24		
33 <i>a</i>	2	666	2 1	7 3			85a 86a	8 10	6	10	24		
							87 <i>a</i>	18	8	36	72		
	(3', 2)	(4', 2)	(6', 2)	$(3', 2^2)$	$(4', 2^2)$	$(6', 2^2)$	88 <i>a</i>	18	8	36	72		
1 <i>a</i>	1	1	1	1			96 <i>a</i>	2 1					
2 <i>a</i> 3 <i>a</i>	8 6	14 6	20 8	32 12	44	68	98a 99a	2					
4a	11	39	49	81	216	246	100 <i>a</i>	2					
5 a	10	16	20	36			101 <i>a</i> 102 <i>a</i>	2 2					
6a 7a	4 9	5 10	8 15	12 30			102 <i>a</i>	4		12	12		
8 <i>a</i>	1	10											
9 <i>a</i>	14	36	64	108	180	354							
10 <i>a</i> 11 <i>a</i>	8 8	14 10	13 13	24 24				$(3', 2^3)$		$(4', 2^3)$	(6', 2	2^{3})	$(3', 2^4)$
12 <i>a</i>	4						2 <i>a</i>	112					
13 <i>a</i> 14 <i>a</i>	12 48	20 324	24 507	48 900	5904	8964	4a 9a	504 672					
14 <i>a</i> 15 <i>a</i>	30	108	150	288	672	984	14a	17136		80640	1209	60	241920
16 <i>a</i>	30	84	141	288	528	924	15 <i>a</i>	2016					
17 <i>a</i> 18 <i>a</i>	18 42	36 168	36 252	72 50 4	1344	2016	16 <i>a</i> 18 <i>a</i>	2016 4032					
19 <i>a</i>	42	132	252	504	1056	2016	19 <i>a</i>	4032					
20 <i>a</i>	22	66	128	252	456	912	20 <i>a</i>	2016					
21 a 22 a	10 17	24 42	8 4 78	96 150	192 234	672 480	21 a 22 a	672 1008					
23 <i>a</i>	30	92	146	288	576	936	23 <i>a</i>	2016					
24 <i>a</i>	17	60	82	150	330	528	24 <i>a</i>	1008					
25 <i>a</i> 26 <i>a</i>	10 18	18 28	17 36	36 72			47a 54a	336 672					
27 a	10	14	17	36			55a	672					
28 <i>a</i>	18	28	36	72 24			60 <i>a</i> 61 <i>a</i>	672 672					
29 a 33 a	6	8 8	12	24			61 <i>a</i> 62 <i>a</i>	672 336					
		•											

$$(p = 3, 4, 6)$$
 are:

$$N_0^{p2} = 309 \ G_3^{3'} + 950 \ G_3^{4'} + 953 \ G_3^{6'} = 2212;$$
 $N_1^{p2} = 1634 \ G_3^{1,3'} + 6361 \ G_3^{1,4'} + 7288 \ G_3^{1,6'} = 15283;$
 $N_2^{p2} = 13391 \ G_3^{2,3'} + 53664 \ G_3^{2,4'} + 78825 \ G_3^{2,6'}$
 $= 145880;$
 $N_3^{p2} = 150197 \ G_3^{3,3'} + 441924 \ G_3^{3,4'} + 967568 \ G_3^{3,6'}$
 $= 1559689;$
 $N_4^{p2} = 1888320 \ G_3^{4,3'} + 2056320 \ G_3^{4,4'} + 10321920 \ G_3^{4,6'}$
 $= 14266560;$
 $N_5^{p2} = 19998720 \ G_3^{5,3'} = 19998720.$

The possible physical applications of the generalized colored symmetry groups derived are considered by Koptsik (1988).

References

International Tables for Crystallography (1987). Vol. A. Dordrecht: Kluwer Academic Publishers.

JABLAN, S. V. (1987). Acta Cryst. A43, 326-337.

JABLAN, S. V. (1990). Publications of the Mathematical Institute, Belgrade, Yugoslavia, Vol. 47, No. 61, pp. 39-55.

JABLAN, S. V. (1992a). Acta Cryst. A48, 322-328.

JABLAN, S. V. (1992b). Mat. Vesn. In the press.

KOPTSIK, V. A. (1966). Shubnikovskie Gruppy. Moscow: MGU.

KOPTSIK, V. A. (1988). Comput. Math. Appl. 16, 5-8, 407-424. PALISTRANT, A. F. (1980). Dokl. Akad. Nauk SSSR, 254 (5),

PALISTRANT, A. F. (1980). Dokl. Akad. Nauk SSSR, **254** (5), 1126–1130.

PALISTRANT, A. F. (1981). Gruppy Tsvetnoi Simmetrii, ih Obobscheniya i Prilozeniya. Kishinev: KGU.

ZAMORZAEV, A. M. (1976). Teoriya Prostoj i Kratnoj Antisimmetrii. Kishinev: Shtiintsa.

ZAMORZAEV, A. M., GALYARSKII, E. I. & PALISTRANT, A. F. (1978). Tsvetnaya Simmetriya, Eyo Obobscheniya i Prilozeniya. Kishinev: Shtiintsa.

ZAMORZAEV, A. M., KARPOVA, YU. S., LUNGU, A. P. & PALISTRANT, A. F. (1986). *P-Simmetriya i Eyo Dal'nejshee Razvitie*. Kishinev: Shtiintsa.

ZAMORZAEV, A. M. & PALISTRANT, A. F. (1980). Z. Kristallogr. 151, 231-248.

Acta Cryst. (1993). A49, 132-137

Mackay Groups

By S. V. Jablan

The Mathematical Institute, Knez Mihailova 35, Belgrade, Yugoslavia

(Received 16 February 1992; accepted 1 July 1992)

Abstract

The number of junior Mackay groups of M^m type is calculated for different nonisomorphic antisymmetric characteristics formed by $1 \le l \le 4$ generators. Combinatorial relationships connecting Mackay and Zamorzaev multiple-antisymmetry groups are established.

The idea, originated by Speiser (1927) and realized by Weber (1929), of representing symmetry groups of bands by black-and-white plane diagrams was the starting point for introducing antisymmetry (Heesch, 1929). The color change white-black used as the possibility for the dimensional transition from the symmetry groups of friezes G_{21} to the symmetry groups of bands G_{321} or from the plane groups G_2 to the layer groups G_{32} , applied on Fedorov space groups G_3 to derive the hyperlayer-symmetry groups G_{43} (Heesch, 1930), was the beginning of the theory

of antisymmetry. Its simple mathematical explanation is the following: if G is a discrete symmetry group with the anti-identity transformation e_1 satisfying the relationship $e_1^2 = E$ and commuting with every symmetry S from G, the group G^1 , consisting of transformations S^1 ($S^1 = S$ or $S^1 = e_1 S$), is an antisymmetry group. The antisymmetry group G^1 can be the generating $(G_1 = G)$, the senior $(G^1 = G \times C_2 = G \times \{e_1\})$ or the junior $(G^1 \simeq G)$ group. Every junior antisymmetry group G^1 is uniquely defined by the generating symmetry group G and its subgroup H of index 2, the symmetry subgroup of G^1 , i.e. by the symbol G/H $(G/H \simeq C_2 = \{e_1\})$. The anti-identity transformation e_1 can be interpreted as the change of any physical or geometrical bivalent property [e.g. (+-), (SN)](convex concave) etc.] independent of the symmetry group G. The development of the theory of antisymmetry can be followed through the works of Shubnikov et al. (1964), Shubnikov & Koptsik (1974) and Zamorzaev (1976).

0108-7673/93/010132-06\$06.00

© 1993 International Union of Crystallography