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Abstract

By use of the antisymmetric characteristic method,
Pawley multiple antisymmetry three-dimensional
space groups G357 (p =3, 4, 6) are derived.

Introduction

Crystallographic (p')-symmetry three-dimensional
space groups (or Pawley colored symmetry groups)
G5 (p=3,4,6) were derived by Palistrant (1980,
1981), Zamorzaev, Galyarskii & Palistrant (1978) and
Zamorzaev, Karpova, Lungu & Palistrant (1986).
From 73 symmorphic space groups G; were derived
670 junior G5 (96 G3 +266 G35 + 308 G§"), from 54
hemisymmorphic G; were derived 562 junior GY
(75 G3 +252 G3 +235 G%) and from 103 asymmor-
phic G3 were derived 980 junior G5 (138 G3 +
432 G5 +410 G3); this means that the category G
(p =3, 4, 6) consists of 2212 junior groups (309 G3 +
950 G" +953 G%). By the use of the generalized anti-
symmetric characteristic (AC) method (Jablan 1987,
1990, 19924, b) all crystallographlc (p', 2')-symmetry
three-dimensional space groups G3* (p =3, 4, 6) will
be derived.

1. Some general remarks on (p’) and (p’, 2') symmetry

Pawley (p’) symmetry is a particular case of the gen-
eral P symmetry with P = D,,,,, where D, is the
regular dihedral permutation group, generated by
the permutations ¢, =(1...p)(p+1...2p) and e, =
(1 p+1)(2 p+2)...(p 2p), p=2, satisfying the rela-
tions

el = e;=(e,e;)’=E.

For each p the group D,,,, is irreducible.

By introducing [ anti-identity transformations
e;,...,¢e., (Zamorzaev, 1976, Zamorzaev & Palis-
trant, 1980) (/e N) commutm; between themselves
and with e,, e,, we have (p’,2') symmetry, with the
group P =D, % Cy.

In this work only junior groups of complete (p’, 2")
symmetry will be considered. Every junior (p') sym-
metry group G” is derived from a particular generat-
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ing symmetry group G, and every junior (p’, 2') sym-
metry group G"” is derived from a particular junior
(p') symmetry group (Zamorzaev, Galyarskii & Palis-
trant, 1978; Zamorzaev, Karpova, Lungu & Palistrant,
1986; Palistrant, 1981).

Theorem 1: (a) A (p’,2') symmetry group G"* is
the junior (p’, 2') symmetry group if all relations given
in the presentation of its generating symmetry group
G remain satisfied after replacing the generators of
the group G by the corresponding (p’, 2') symmetry-
group generators.

(b) A jlltllOl' (p',2") symmetry group is called the
M™-type (p’,2') symmetry group if it is an M ™-type
group regarded as an l-multlple antisymmetry grouP

(¢) A junior M'"-type (p', 2') symmetry group G*°
has complete (p’,2') symmetry if, for every i (i=
1,2,...,1+2), the ¢; transformation can be obtained
in the group G as an independent (p’, 2') symmetry
transformation.

If only condition (c) is not satlsﬁed G"' is the
incomplete junior M™-type (p’,2') symmetry group.

Since the derivation of (3’,2") symmetry groups
coincides with the derivation of (32,2') symmetry
groups (Jablan, 1992a) as the basis for the derivation
of all crystallographic (p’,2') symmetry groups
(where p=3, 4, 6), (4') and (6’) symmetry groups will
be sufficient. The derivation will be realized by the
use of the generalized AC method.

Definition 1: Let all the products of (p') symmetry
generators of a group G”, within which every gen-
erator participates once at most be formed and then
subsets of transformations equivalent with regard to
(p') symmetry be separated. The resulting system is
called the antisymmetric characteristic of the group
G” and is denoted by AC(G”) (Jablan, 1987, 1990,
1992a, b).

Theorem 2: Two M ™-type (p’, 2') symmetry groups
derived from the same (p’) symmetry group for m
fixed (m=1,...,[) are equal if and only if they
possess equal antisymmetric characteristics.

The problem of differentiating between complete
and incomplete (p',2')-symmetry junior M™-type
groups can be solved by the use of the homomorphism
of the subgroup C, ={e,} of the group D, ,,, to the
group C, at p=0 (mod 2)

2k—1 2k
€, e, e >FE

(Jablan, 1992a, b).

1=k=(p+1)/2
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Table 1. Catalogue of junior M™-type (p',2")-
symmetry symmorphic three-dimensional space groups

The numbers N2, (p =3, 4,6) are:

N§ =96 G3 +266 G3 +308 G5 =670;
N’ =496 G372 +2171 G3* +2644 G} = 5311,
N =4709 G +24088 g3* + 38133 G} = 66930;

N£'=71713 G3*'+273252 G3*' + 666512 G3*
=1011477,

PAWLEY SPACE GROUPS

NE =1283520 G5 + 2056320 G3*' + 10321920 G+

=13661760;

NZ'=19998720 G5~ = 19998720.
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2s 1
3s 56
Ss 112
7s 1400 3276 7616 13440
8s 672
9s 1516 3360 13776 20160
10s 1680
12s 336
13s 5712 18144 43008 80640
14s 1344
155 2688
17s 1344

18s 17220 77112 364224 685440 2056320 10321920 19998720
19s 16464 49392 106848 241920

20s 672
21s 10080 64512 86016 161280
28s 336
30s 336
32s 336
33s 336
36s 5712 57456 45024 80640
37s 1344
58s 2016

2. (p’, 2')-symmetry three-dimensional space groups
G3" (p=3,4,6)

The original Fedorov symbols of symmorphic, hemi-
symmorphic and asymmorphic space groups
(Koptsik, 1966; Zamorzaev 1976), international sym-
bols (International Tables for Crystallography, 1987)
and Zamorzaev notation are used in space-symmetry-
group notation,

The application of the theoretical assumptions
given above will be illustrated by examples of com-
plete M™-type (p’,2')-symmetry junior three-
dimensional space groups (p =3, 4, 6) derived in the
family with the common generating symmetry group
G=7s (P2/m), {a,b,c}(2: m) with the AC:
{m, cm}{2, 2a, 2b, 2ab} belonging to the AC-equiva-
lency class VII (Jablan, 1987, Table 1). At p=3 we
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have two junior (3') symmetry groups:

{a, b, c®}(2: m"),

{a®, b, c}(2": m).
Because of the e, transformation m”, the AC of the
first group is of the form {e,, e;}{E, E, E, E} and of
the type (2)(5)", and the AC of the second is of the
form {E, E}{e,, e,,e,, e} and of the same type
(3)(5)". Hence, for both of them, N,=7, N,=64,

N;=700, N,=6720 (Jablan, 1987, 1992a). So we
have the following complete (3’, 2) symmetry groups:

{*a, b, c®}(2: m"),
{a, b, c®}(*2: m"),
{*a, b, c®}(2: *m"),
{a, b, c}(*2: *m")),
{a®, b, *c}(2": m),
{*a®, b, *c}(2”: m),
{a®, b, *c}(*2”: m)

{a, b,*c®}(2: m"),
{*a, b, *c®}(2: m"),
{a, b,*c®}(*2: m"),
{*a®, b, c}(2": m),
{a®, b, c}(2": *m),
{*a®, b, c}(2": *m),
{a®, b, c}(*2": *m),

where the antisymmetries are denoted by an asterisk.
At p=0(mod 2), the form and, consequently, the
type of AC(G”) is obtained by the use of the
homomorphism mentioned in § 1. By treating the six
(4') symmetry groups belonging to this family in this
way, we have the following results: three of them,
{a® b, c}(27: m), {a b, c}(2”: m©@) and {a%, b, ¢?}
(2”: m), possess ACs of the form {E, E} {e,,e,,
e e,, e, e,} and of the type (3)(9), where (9) denotes
the type of term {e,, e, e,e,, e,e,}, which contains e,
and e, e, transformations. These transformations are
nonequivalent in the sense of multiple antisymmetry,
so with regard to the multiple antisymmetry the type
of the term mentioned is (9). However, they are
equivalent in the sense of (p’) symmetry, so the type
of this term is denoted by (9). This is the reason why
the derivation of multiple-antisymmetry groups from
the (p') symmetry groups with such antisymmetric
characteristics cannot be simply reduced according
to the theory of multiple antisymmetry, ie. by the
derivation of M ™-type multiple antisymmetry groups
of the (m=3,...,1+2) from the M’-type groups, as
was done in the case of (p2,2') symmetry groups. In
all the cases when some part of the AC contains the
equivalent transformations e, and e, e,, the type of
this term will be underlined. From the first group
{a“, b, c}(2”: m), we derive N,[{a“, b, c}(2": m)]=
9 junior complete M'-type (4',2) symmetry groups:
{a", b, c}2”:*m) with AC: {e;, e;){e,, e, €€,
e e} of type (3)(9)%
{a“ b, c}(*2”: *m) with AC: {e,, e;){e,e;, €65,
e €63, €,6;¢3} of type (3)(9)%
{*a“ b, c}(2”:*m) with AC:
e 6,63, e,e,63} of type (3)(9)%;

{es, es){e,, e,
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{a“ b, *c}(2”: m) with AC: {E, e;){e,,e,, ee,
e e} of type (4)(9)%;

{a“, b, *c}(*2"”: m) with AC: {E, e;){e,e;, e,e;,
e e,e5, e,e,e3} of type (4)(9)°;

{*a“, b,*c}(2”: m) with AC: {E, e;){e,,e,,
e .3, e,e,¢,} of type (4)(9)°;
{a“,*b, c}(2”: m) with AC: {e,,e;){e,, e e,,

eze3, e,e,¢;} of type (3)(16)°;

{a“,*b, c}(2"”: *m) with AC:
e,e;, €,6,e;} of type (3)(E)3;

{a" *b, c}(2”: m) with AC:
e e,e;, e,e;} of type (‘“(E)}

From the groups with the AC of type (3)(9)° can
be derived the six M*-type groups: two of type
(4)(9)*, one of type (4)(9)*, two of type (3)(16)* and
one of type (4)(16)*; from the group with the AC of
type (3)(9)°, the seven M*-type groups: four of type
(4)(9)*, two of type (3)(16)* and one of type (4)(16)*;
from the groups with the AC of type (4)(9)°, the ten
M*-type groups: four of type (4)(9)*, two of type
(4)(9)* and four of type (4)(16)*; from the group with
the AC of type (4)(9)°, the 12 M*-type groups: eight
of type (4)(9)* and four of type (4)(16)*; from the
group with the AC of the type (3)(16), the 12 M*-
type groups: four of type (3)(16)°, two of type
(3)(16)*, four of type (4)(16)* and two of type
(4)(16)*; from the group with the AC of
the type (4)(16)°, the 18 M*-type groups: 12 of
type (4)(16)° and 6 of type (4)(16)°. Hence,
N,{{a“, b, c}(2”: m)]=93. Since 4 M*-type groups
can be derived from the groups of types (4)(9)* and
(4)(9)*, 6 can be derived from (3)(16)*, 8 from
(3)(16)%, 12 from (4)(16)* and 16 from (3)(16)*%,
Ns[{a", b, c}(2": m)] = 840.

The remaining three (4') symmetry groups
{a, b, c“}(2: m"), {a, b, c“}(2*: m") and
{a®, b, c"*}(2: m"”) possess the AC of the form
{e,, e;e;}(E, E, E, E} and of type (4)(5)%, where (4)
denotes the type of the term {e,, e,e,}. In the case of
(p') symmetry groups with the AC in which the term

{es, e5){e,, ey,

{E, eS){eZ’ € 6,

{e,, e;e,} occurs once and only once, the series of

numbers N?, can be simply computed using the fol-
lowing theorem.

Theorem 3: Assume that in the AC(G”) the term
{e,, e,e;} occurs once and only once. If N, denotes
the number of junior M™"*-type multiple antisym-
metry groups derived from the AC(G”) treated as
the AC of a two-multiple antisymmetry group, then
N,.(G")=(Q2™+1)N,,/2" " (m=1,...,1).

Proof: Because the term {e,, e,e,} occurs once and
only once in the AC(G”'), it is independent of the
other part of the AC. For m =1 it is transformed into
the four terms that differ in the sense of three-multiple
antisymmetry: {e,, e,e,}, {e,e;, e,e;}, {e,, e ,e,e5},
{e,e;, e e;e5}, resulting in the three terms that differ
in the sense of (p’,2) symmetry: ({e,,ee,},
{eze3, ee:} = {e;, €, 505}, {e.e3, eje5e;}. Hence,
N,(G*)=3N,/4. Proceeding in the same way, for
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Table 2. Catalogue of junior M™-type (p',2')-sym-
metry hemisymmorphic three-dimensional space groups
The numbers N%, (p=3,4,6) are:

N =75 G3 +252 Gy +235 G§ =562;

NP =413 G} +1705 G} + 1863 G}* =3981;

NZ =3498 G2 +13368 G2 + 19786 G5 = 36652;

NZ =37884 G3*' +88032 G3* + 180096 G3° = 306012;

N2 =362880 G5 =362880.

(3) (@) (6) (3) (@) (6) (3) (@) (6)
1h 1 2 3 19h 1 3 3 37h 1 10 3
2h 1 2 1 20h 2 11 12 38h 1 16 7
3h 2 7 9 21h 2 14 22 39 2
4h 2 S S 2h 2 12 12 40h 1
Sho 1 3 S 23h 2 9 12 41h 1
6h 2 7 12 24h 1 2 2 42h 2 1 2
7h 2 7 5 25h 4 43h 3 1 3
8h 1 2 2 26h 4 44h 2 2
9h 1 2 3 27h 2 45h 3 1 3
10h 1 4 3 28h S 46h 4 1 4
1th 2 9 11 29h 1 7 3 47h 2 1 2
12h 2 9 6 30h 1 6 3 48h 3 2 9
13h 2 7 5 31h 1 6 2 S1h 1
14h 2 3 6 320 1 6 3 52h 1
15h 1 3 3 33h 1 4 2 53h 1 2
16h 1 1 1 34h 1 6 3 S54h 1 1
17h 2 10 16 35h 1 1 S
18h 2 8 10 36h 1 16 7

(3,2) &,2) (6,2) (3,2 4,2 (6,29
1h 3 6 7 6
2h 1
3h 12 35 50 72 132 212
4h 8 16 14 24
Sh 7 18 34 54 90 192
6h 20 60 102 192 384 648
Th 8 18 13 24
8h 3 2 4 6
9h 6 8 12 24
10h 6 12 12 24
11h 20 76 94 192 480 600
12h 12 36 24 48
13h 12 28 20 48
14h 12 12 24 48
15h 6 10 12 24
16h 2
17h 26 122 242 456 1872 4074
18h 17 53 78 150 288 498
19h 5 9 15 24 18 58
20h 24 104 126 264 720 936
21h 36 256 444 768 5088 8784
22h 22 120 124 252 960 940
23h 24 88 126 264 624 948
24h 4 4 5 12
25h 12
26h 16
28h 20
29h 4 17 8 12
30h 4 16 8 12
31h 4 16 5 12
32h 4 15 8 12
33h 3 4 4 6
34h 4 18 8 12
35h 10 104 48 96 336 840
36h 10 134 60 96 840 384
37h 6 40 12 24
38h 14 192 84 168 1536 672
42h 4
43h 6
44h 4
45h 6
46h 8
47h 4
48h 18 8 36 72
53h 2
54h 2
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Table 2 (cont.)

(3,2%) (4,2%) (6,2%) (3,29
3h 336
sh 336
6h 1344
11k 1344

17h 8568 23520 53760 120960
18h 1008
19h 84
20h 2016

21h 16128 64512 126336 241920
22h 2016
23h 2016
35h 672
36h 672
38h 1344

everym (m=2,...,1),itis transformed into the 2™"'

terms that differ in the sense of (m +2)-multiple anti-
symmetry, resulting i in the 2™ +1 terms that differ in
the sense of (p’,2') symmetry, so N,(G")=
(2™ +1)N,,/2™".

Treated as the AC of a two-multiple antisymmetry
group, the AC of the form {e,, e,e,}{E, E, E, E} and
of type (4)(5)* gives N, =8, N, =64, N; =448, so for
the (4') symmetry group G* ={a, b, c*}(2: m") with
the same AC, of type (4)(5)%, N,(G*)=6, N,(G*)=
40, N, = (G*) = 252. The same holds for the other two
(4') symmetry groups {a“, b, c}(2%: m”), {a®*, b, ¢}
(2: m”) with identical ACs. Hence, for the symmetry
group 7s (P2/m), N{(7s)=45, N3(7s)=399,

1(7s) =3276.

From the ten (6') symmetry groups of the same
family, two of them, {a,b,c®}(2* m”) and
{a‘3 b, c}(2” m®©) possess the AC of type (3)(5)%,
giving N{=5, N$=34, N3$=234; one,
{a(2 b, c“}(2 m"), possesses the AC of type (3)(9)%,
N§ =1344;

giving N${ =11, N$=132, one,
{a®, b, c(z}(Z” ) possesses the AC of type (4)(5)2,
giving N$=8, N$=64, N$=448; two,

{a‘®, b, c}(2”: m) and {a‘®, b, c}(2": m?), possess the
AC of type (3)(9)% giving N$=9,  N§ =93 N§=
840; three, {a, b, c°}(2: m"), {a, b, ¢°}(2*: m”) and
{a(2 b, c(°}(2 m’)) possess AC of type (4)(9)?, giving
N¢=12, N$=150, N$=1512; and one,
{a'® b, c(z}(2’). m), possesses AC of type (4)(2)2,
giving N$ =13, N$=168, Nj;=1680. Hence,
N¢(7s) =84, N$(7s) =848, N5 (7s) =17616.

In the same manner, the partial catalogue at all
complete M ™-type (p’, 2')-symmetry Jumor symmor-
phlc three-dimensional space groups G5”(p =3, 4, 6)
is realized. According to Jablan (1987), this partial
catalogue leads to the possibility of a complete
catalogue. The final results, according to symmorphlc
hemisymmorphic and asymmorphlc (p', 2") symmetry
groups are summarized in Tables 1 to 3.

3. Concluding remarks

For the junior M™-type (P’,2')-symmetry three-
dimensional space groups, the numbers NZ,



Table 3. Catalogue of junior M™-type (p’,2')-
symmetry asymmorphic three-dimensional space groups

The numbers N”, (p=3,4,6) are:

NE =138 G3 +432 G3 +410 G =980,
NP =725 G3¥' +2485 G3* +2781 Gy** = 5991,
N5 =5184 G +16208 G} +20906 G7* = 42298;

N =40600 G +80640 G +120960 G3* = 242200,
NE =241920 G3* = 241920.
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36

(4,2)

80640

(3,29

pL

12
12
12
12

54

24
24

72
72

(6',2%

120960

(4,2%)

288

828
720

1536

240

131

(6',2%)

174

384
384

336

192

(3,29

241920



132
(p=3,4,6) are:
N5?=309 G3 +950 G5 +953 G$ =2212;

N22=1634 G1¥ +6361 G3* +7288 G =15283;
N5 =13391 G3*'+ 53664 G3* +78825 G3*

= 145880,

N22=150197 G3* +441924 G3* + 967568 G2
=1559689;

NZ=1888320 G +2056320 G5* + 10321920 G5*
= 14266560;

N2*=19998720 G3* = 19998720.

The possible physical applications of the general-
ized colored symmetry groups derived are considered
by Koptsik (1988).

Acta Cryst. (1993). A49, 132-137
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Abstract

The number of junior Mackay groups of M™ type is
calculated for different nonisomorphic antisymmetric
characteristics formed by 1=1/=<4 generators. Com-
binatorial relationships connecting Mackay and

Zamorzaev multiple-antisymmetry groups are estab-
lished.

The idea, originated by Speiser (1927) and realized
by Weber (1929), of representing symmetry groups
of bands by black-and-white plane diagrams was the
starting point for introducing antisymmetry (Heesch,
1929). The color change white-black used as the
possibility for the dimensional transition from the
symmetry groups of friezes G,, to the symmetry
groups of bands G;,, or from the plane groups G,
to the layer groups G,,, applied on Fedorov space
groups G; to derive the hyperlayer-symmetry groups
G,; (Heesch, 1930), was the beginning of the theory
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of antisymmetry. Its simple mathematical explanation
is the following: if G is a discrete symmetry group
with the anti-identity transformation e, satisfying the
relationship e,” = E and commuting with every sym-
metry S from G, the group G', consisting of transfor-
mations S' (S'=S or S'=e¢,S), is an antisymmetry
group. The antisymmetry group G' can be the gen-
erating (G, = G), the senior (G'=G x C,= G x{e,})
or the junior (G'= G) group. Every junior antisym-
metry group G' is uniquely defined by the generating
symmetry group G and its subgroup H of index 2,
the symmetry subgroup of G', i.e. by the symbol G/ H
(G/H = C,={e,}). The anti-identity transformation
e, can be interpreted as the change of any physical
or geometrical bivalent property [e.g. (+ =), (S N),
(convex concave) etc.] independent of the symmetry
group G. The development of the theory of antisym-
metry can be followed through the works of Shub-
nikov et al. (1964), Shubnikov & Koptsik (1974) and
Zamorzaev (1976).

© 1993 International Union of Crystallography



